1) Implement UX Design Process – For this competency, I put together a visual design process flow for a web application built with React.js and Node.js that would allow users to interact with each other in an online forum setting. The steps of the design process included user research, prototyping and testing, wireframing, UI/UX development and implementation, usability testing and optimization. As part of my research into the development of the project plan I found out about accessibilty audit tools such as Wave or AXE which can be used to help ensure compliance to accessibility standards when designing websites.
The costs of most renewable energy sources have been falling rapidly and increasingly able to outcompete nuclear power as a low carbon option and even fossil fuels in some places; photovoltaic panels, for example, have halved in price from 2008 to 2014. Worse still for nuclear power, it seems that while costs of renewable energy have been falling, plans for new nuclear plants have been plagued with delays and additional costs: in the UK, Hinkley Point C power station is set to cost £20.3bn, making it the world’s most expensive power station, and significant issues in the design have raised questions as to whether the plant will be completed by 2025, it’s current goal. In France, the Flamanville 3 reactor is now predicted to cost three times its original budget and several delays have pushed the start up date, originally set for 2012, to 2020. The story is the same in the US, where delays and extra costs have plagued the construction of the Vogtle 3 and 4 reactors which are now due to be complete by 2020-21, 4 years over their original target. Nuclear power seemingly cannot deliver the cheap, carbon free energy it promised and is being outperformed by renewable energy sources such as solar and wind.
The crucial and recurring issue with nuclear power is that it requires huge upfront costs, especially when plants are built individually, and can only provide revenue years after the start of construction. This means that investment into nuclear is risky, long term and cannot be done well on a small scale, though new technologies such as SMRs (Small Modular Reactors) may change this in the coming decades, making it a much bigger gamble. Improvements in other technologies over the period of time a nuclear plant is built means that is often better for private firms, who are less likely to be able to afford large scale programs enabling significant cost reductions or a lower debt to equity ration in their capital structure, to invest in more easily scalable and shorter term energy sources, especially with subsidies favouring renewables in many developed countries. All of this points to the fundamental flaw of nuclear: that it requires going all the way. Small scale nuclear programs that are funded mostly with debt, that have high discount rates and low capacity factors as they are switched off frequently will invariably have a very high Levelised Cost of Energy (LCOE) as nuclear is so capital intensive.
That said, the reverse is true as well. Nuclear plants have very low operating costs, almost no external costs and the cost of decommissioning a plant are only a small portion of the initial capital cost, even with a low discount rate such as 3%, due to the long lifespan of a nuclear plant and the fact that many can be extended. Operating costs include fuel costs, which are extremely low for nuclear, costing only 0.0049 USD per kWh, and non-fuel operation and maintenance costs which are barely higher at 0.0137 USD per kWh. This includes waste disposal, a frequently cited political issue that has no longer been relevant technically for decades as waste can be reused relatively well and stored on site safely at very low costs simply because the quantity of fuel used and therefore waste produced is so small. The fuel, uranium is abundant and te