EC 226 Homework #7

[et_pb_section fb_built="1" specialty="on" _builder_version="4.9.3" _module_preset="default" custom_padding="0px|0px|0px|||"][et_pb_column type="3_4" specialty_columns="3" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_row_inner _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet" custom_padding="28px|||||"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" hover_enabled="0" sticky_enabled="0"]
    1. QUESTION

     

    EC 226 Homework #7

     

    1. Use the date in DB1B which is the Airline Origin and Destination Survey. It contains 10% sample of airline tickets collected by the Bureau of Transportation Statistics.

     

    • To download data go to https://www.transtats.bts.gov/tables.asp?DB_ID=125&DB_Name=, then click ‘download’ in DB1BMarket. In the next page, you choose one geography, year and period. For example, I use Massachusetts in 2018 Q1.
    • You can download all variables (shown as field name) which makes your data too big, so only choose the following variables; ItinID, MktID, Origin, Dest, OpCarrier, MktFare, MktMilesFlown, NonStopMiles.
    • The name of the downloaded file is ‘Origin_and_Destination_Survey_DB1BMarket_year_quarter’ and change its name to ‘Airline sample’.
    • The next step is to change your ‘Airline sample. cvs’ to ‘Airline sample. dta’ file. Start Stata program and import text files (comma- or tab-separated files) by going to File > Import > Text data. Then, choose your data and click ok.
    • Start ‘Airline sample. do’ file downloaded from the Moodle.

     

    1. Find the average values of market fare and market miles flown, along with standard deviations.

     

    1. Estimate the regression model

    by OLS and OLS with clusters. Interpret the coefficients.

     

    1. Find the p-value for the test against . Do you reject  at 5% level?

     

    1. Find the p-value for the test against . Do you reject  at 5% level?

     

    1. Estimate the following simple regression of P on HHI: . Is the estimated coefficient on HHI much different from the estimate in part b? Why or Why not?

     

[/et_pb_text][et_pb_text _builder_version="4.9.3" _module_preset="default" width_tablet="" width_phone="100%" width_last_edited="on|phone" max_width="100%"]

 

Subject Statistics Pages 5 Style APA
[/et_pb_text][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner module_class="the_answer" _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" width="100%" custom_margin="||||false|false" custom_margin_tablet="|0px|||false|false" custom_margin_phone="" custom_margin_last_edited="on|desktop"]

Answer

  1. Find the average values of market fare and market miles flown, along with standard deviations.

 

On the analysis, the market fares indicate a mean of $301.74 with a standard deviation of 238.07. The maximum fare viewed at $9,000 with a minimum of $0. The market miles covered presented a mean of 2309.68 with a standard deviation of 1170.22, having a maximum of 9700 miles with a minimum of no distance covered.

  1. Estimate the regression model

by OLS and OLS with clusters. Interpret the coefficients.

 

On the regression model, the intercept indicates a positive effect on the market prices of the flights (β=176.84). The parameter indicates a significant effect on the market prices of the airlines, hence required in the model (t=45.76, p=0.000). Jet blue indicates a negative effect on the model (β=-0.022) with an insignificant effect on the market prices. This males the Jet blue parameter not required by the model (t=-1.30, p=0.193). South West on the other hand also indicated a positive effect on the market prices (β=0.008) with no significant effect on the market prices (t=0.49, p=0.624).

Spirit indicated a positive effect on the market prices charged (β=0.031) with a significant effect on the market prices at 10% level of significance. This ensures the inclusion of the parameter in predicting market prices charged. HHI indicated a positive effect on the market prices charged (β=0.004) with an insignificant effect on the market prices at 5% level of significance (t=0.25, p=0.80). This ensures the inclusion of the HHI parameter in predicting market prices charged. Spirit indicated a positive effect on the market prices charged (β=0.031) with a significant effect on the market prices at 10% level of significance. This ensures the inclusion of the parameter in predicting market prices charged. Market miles covered indicated a positive effect on the market prices charged (β=0.088) with a significant effect on the market prices at 5% level of significance. This ensures the inclusion of the parameter in predicting market prices charged. Non-stop miles indicated a negative effect on the market prices charged (β=-0.037) with a significant effect on the market prices at 5% level of significance.

 

  1. Find the p-value for the test against . Do you reject  at 5% level?

P=0.624. This shows evidence to fail to reject the null hypothesis at 5% level of significance since the p-value greater than 0.05.

 

  1. Find the p-value for the test against . Do you reject  at 5% level?

P=0.800. This shows evidence to fail to reject the null hypothesis at 5% level of significance since the p-value greater than 0.05.

 

  1. Estimate the following simple regression of P on HHI: . Is the estimated coefficient on HHI much different from the estimate in part b? Why or Why not?

On the estimated model, we have the equation:

The equation shows no much differences from part (b), with the evidence of a non-statistical implication of the HHI on the market prices (t=-0.21, p=0.833).

 

References

[/et_pb_text][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|desktop" custom_padding="60px||6px|||"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" min_height="34px" custom_margin="||4px|1px||"]

Related Samples

[/et_pb_text][et_pb_divider color="#E02B20" divider_weight="2px" _builder_version="4.9.3" _module_preset="default" width="10%" module_alignment="center" custom_margin="|||349px||"][/et_pb_divider][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner use_custom_gutter="on" _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px||" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet" custom_padding="13px||16px|0px|false|false"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_blog fullwidth="off" post_type="project" posts_number="5" excerpt_length="26" show_more="on" show_pagination="off" _builder_version="4.9.3" _module_preset="default" header_font="|600|||||||" read_more_font="|600|||||||" read_more_text_color="#e02b20" width="100%" custom_padding="|||0px|false|false" border_radii="on|5px|5px|5px|5px" border_width_all="2px" box_shadow_style="preset1"][/et_pb_blog][/et_pb_column_inner][/et_pb_row_inner][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_sidebar orientation="right" area="sidebar-1" _builder_version="4.9.3" _module_preset="default" custom_margin="|-3px||||"][/et_pb_sidebar][/et_pb_column][/et_pb_section]