[et_pb_section fb_built="1" specialty="on" _builder_version="4.9.3" _module_preset="default" custom_padding="0px|0px|0px|||"][et_pb_column type="3_4" specialty_columns="3" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_row_inner _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet" custom_padding="28px|||||"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" hover_enabled="0" sticky_enabled="0"]
QUESTION
Describe how epidemiological data influences changes in health practices. Provide an example and explain what data would be necessary to make a change in practice.
[/et_pb_text][et_pb_text _builder_version="4.9.3" _module_preset="default" width_tablet="" width_phone="100%" width_last_edited="on|phone" max_width="100%"]
Subject |
Nursing |
Pages |
2 |
Style |
APA |
[/et_pb_text][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner module_class="the_answer" _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" width="100%" custom_margin="||||false|false" custom_margin_tablet="|0px|||false|false" custom_margin_phone="" custom_margin_last_edited="on|desktop"]
Answer
-
Describe how epidemiological data influences changes in health practices. Provide an example and explain what data would be necessary to make a change in practice.
How epidemiological data influences changes in health practices
Collecting epidemiological data, such as patient age and gender, are fundamental aspects considered in the field of healthcare today. The epidemiological data has the power to influence health practices in various ways. Notably, health care professionals can rely on the collected epidemiological data to improve the health status of the members of the population (Gulis & Fujino, 2015). Arguably, the information and knowledge derived from the epidemiological information can be translated into health interventions that are effective in improving health. Gulis and Fujino (2015) state that epidemiological data has focused on creating a wealth of accumulated experiences desirable in assessing the macro-environments as well as specific agents that may influence health. Epidemiological data is also desirable in influencing the changes in the health practices by making it possible for policymakers to access public health concerns and devise policies that can be implemented to improve a community’s general health.
For instance, epidemiological data which suggests that obesity is highly evident among the members of the Black community, such as the African Americans, is a fundamental detail that can be considered to address the issue of obesity in the community. The epidemiological data can guide healthcare professionals to establish effective interventions focused on promoting the health outcomes of the members of the community. For instance, community health nurses can rely on this data to establish diet advice focused on the members of the community. The advice provided can include details such as how to overcome maintain positive health outcomes by avoiding a high-calorie diet. Moreover, this can also include information guiding the members of the community about the benefits of exercising and its effectiveness in weight loss. The epidemiological data can be further be used for assessment to derive if the community members were observant of the set regulations and advice based on a change in the number of obesity cases reported by the members of the community.
References
-
-
-
Gulis, G., & Fujino, Y. (2015). Epidemiology, population health, and health impact assessment. Journal of Epidemiology, 25(3), 179–180. https://doi.org/10.2188/jea.JE20140212
[/et_pb_text][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|desktop" custom_padding="60px||6px|||"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" min_height="34px" custom_margin="||4px|1px||"]
Related Samples
[/et_pb_text][et_pb_divider color="#E02B20" divider_weight="2px" _builder_version="4.9.3" _module_preset="default" width="10%" module_alignment="center" custom_margin="|||349px||"][/et_pb_divider][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner use_custom_gutter="on" _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px||" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet" custom_padding="13px||16px|0px|false|false"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_blog fullwidth="off" post_type="project" posts_number="5" excerpt_length="26" show_more="on" show_pagination="off" _builder_version="4.9.3" _module_preset="default" header_font="|600|||||||" read_more_font="|600|||||||" read_more_text_color="#e02b20" width="100%" custom_padding="|||0px|false|false" border_radii="on|5px|5px|5px|5px" border_width_all="2px" box_shadow_style="preset1"][/et_pb_blog][/et_pb_column_inner][/et_pb_row_inner][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_sidebar orientation="right" area="sidebar-1" _builder_version="4.9.3" _module_preset="default" custom_margin="|-3px||||"][/et_pb_sidebar][/et_pb_column][/et_pb_section]