Mathematical Economics---Final Exam

[et_pb_section fb_built="1" specialty="on" _builder_version="4.9.3" _module_preset="default" custom_padding="0px|0px|0px|||"][et_pb_column type="3_4" specialty_columns="3" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_row_inner _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet" custom_padding="28px|||||"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" hover_enabled="0" sticky_enabled="0"]
    1. QUESTION

    Mathematical Economics---Final Exam   

    Mathematical Economics--- Final Exam

     

     

     

    Name :                                                                         

     

    1. Find the differential dy,given(10 marks, 5marks each):

    (a)y=-x(2x2+3)

    (b)y=(X-8)(7x+8)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    2.Given S1={1,2,3},S2={a,b},and S3={m,n},find the Cartesian products: (21 marks, 7 marks each)

    • S1XS2 (b)S2XS3        (c)S3XS1

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    3.Find the value of the following factorial expressions: (25 marks, 5marks each)

    • 5!
    • 6!
    • 4!/3!
    • 6!/4!
    • (n+2)!/n!

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    4.Find the stationary values of the following functions: (10marks, 5arks each)

    • Y=x4
    • Y=-x3

    Determine by the Nth-derivative test whether they represent relative maxima, relative minima, or inflection points

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    5.Let the demand and supply functions be as follows: (20 marks, 10marks each)

    • Qd=51-3P (b) Qd=30-2P

    Qs=6P-13                                     Qs=-5+5P

    Find P*and Q* by elimination of variables.(Use fractions rather than decimals.)

     

     

     

    6.Find the characteristic vectors of the matrix (4    2)  (14 marks)

                                         ( 2   1)

     

[/et_pb_text][et_pb_text _builder_version="4.9.3" _module_preset="default" width_tablet="" width_phone="100%" width_last_edited="on|phone" max_width="100%"]

 

Subject Economics Pages 8 Style APA
[/et_pb_text][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner module_class="the_answer" _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" width="100%" custom_margin="||||false|false" custom_margin_tablet="|0px|||false|false" custom_margin_phone="" custom_margin_last_edited="on|desktop"]

Answer

Mathematical Economics--- Final Exam

  1. Find the differential dy, given

(a) y=-x (2x2+3)

(b) Y=(X-8) (7x+8)

 

  1. a) Y = -2x3 + 3x

dy/dx = -6x2 + 3

 

  1. b) y = (x-8) (7x+8)

y= 7X2 – 48X -64

dy/dx = 14x – 48

 

 

  1. Given S1={1,2,3},S2={a,b},and S3={m,n},find the Cartesian products

Given S1 = {1, 2, 3}, S2 = {a, b}, S3 = {m, n}

 

In this case, S1, S2 S3 = Ø

  1. S1 X S2

From principles, AXB = {(a, b): aϵA, bϵb}

For non-empty sets A and B

Thus for this case, for non-empty sets S1 and S2

The cartesian product {1,2,3} X {a,b} = {(1,a), (1,b),(2,a), (2,b), (3,a)(3,b)}

  1. S2X S3,

Following as in a) above, both are non-empty sets, hence

{a, b} X {m, n} = {(a, m), (a, n), (b, m), (b, n)}

 

  1. S3X S1, {m,n}X {1,2,3} = {(m,1), (m,2),(m,3), (n,1),(n,2), (n,3)}

 

 

  1. Find the value of the following factorial expressions: (25 marks, 5marks each)
  • 5!
  • 6!
  • 4! /3!
  • 6! /4!
  • (n+2)! /n!

 

  1. a) 5!

n! = n (n-1)!

Hence

5! = 5X4X3X2X1

= 120

 

  1. b) 6!

From n! =n (n-1)!

6! = 6X5!

6X 5!

6X120

720

 

  1. 4! /3!

From n! = 4X3! /3!

=4

  1. 6! /4!

From principle, n! = n (n-1)!

6 X5 X4! /4!

=30

  1. (n+2)! /n!

From principles, n! = n (n-1)!

(n +2) (n+1) n! /n!

=n2 + 3n + 2

 

  1. Find the stationary values of the following functions
  • Y=x4
  • Y=-x3

Determine by the Nth-derivative test whether they represent relative maxima, relative minima, or inflection points

Stationary values

Principles, if dy/dx = 0 => stationary point, first order derivative = 0

 

To determine maxima, minima, or point of local inflection, we use the second order derivative by applying the following principles d2y/dx2

d2y/dx2 <0 at that point => local maxima,

d2y/dx2 >0 at that point => local minima,

d2y/dx2 =0 at that point => local point of inflection,

Hence for given equations below

  1. y = x4

dy/dx = 0 at a stationary point =>

dy/dx = 4x3 = 0

At x=0, y=0 hence at point (0, 0)

d2y/dx2 = 12x2

At the point x = 0, d2y/dx2 =0

Implies point of inflection

 

 

  1. –x3

dy/dx = -3x2

Stationary point, -3x2 =0, => x=0

d2y/dx2 = -6x

At x=0, d2y/dx2 = 0

From principles, d2y/dx2 = 0 at this point hence point of inflection

 

  1. Let the demand and supply functions be as follows
  • Qd=51-3P (b) Qd=30-2P

Qs=6P-13                                     Qs=-5+5P

Find P*and Q* by elimination of variables. (Use fractions rather than decimals.)

  1. a) Qd = 51 – 3p ---i

Qs = 6p - 13 -----ii

By elimination, multiply i X 2 and ii X1

Thus

2Q = 102 – 6p ----iii

Q = -13 +6p ------IV

Adding the two

3Q = 89

Q = 89/3

= 29 2/3,

Substituting,

89/3 = 51 – 3p

89 = 153 – 9p

9p = 64

P = 64/9

P= 7 1/9

 

  1. Qd =30 – 2p ---i

Qs = -5 +5p   ---ii

iX 5

iiX2

5Q = 150 -10p --iii

2Q = -10 +10p—iv

 

Add iii + iv

7Q = 140

Q= 20

20 = 30 – 2P

2P = 10

P = 5

 

  1. Find the characteristic vectors of the matrix       )

Def. )=

() ()-(2) (2)

4-4λ-λ+λ-4=

λ2-5λ=0

λ (λ-5) =0

λ = 0

λ = 5

At λ = 0 point, the corresponding vectors are

Matrix B =) =)

Solving vectors BX=O

Using row reduction

)( ) = ()

 )  =

Let R2 = R1 – 2R2

4x1 - 2x2 =0

x2= -2 x1

let x1 = 1

x2 = 2

Thus characteristic vector  x1 =)

At λ = 5 point, the corresponding vectors are

C =) =)

CX = 0

Using low reduction

)( ) = ()

 )

2R1 + R2 = R2

-X1 + 2X2 = 0

X1 = 2 X2

Let X2 = 1, X1 = 2

Thus

)( ) = ) = )

Characteristics vector X2 =)

 

References

[/et_pb_text][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|desktop" custom_padding="60px||6px|||"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" min_height="34px" custom_margin="||4px|1px||"]

Related Samples

[/et_pb_text][et_pb_divider color="#E02B20" divider_weight="2px" _builder_version="4.9.3" _module_preset="default" width="10%" module_alignment="center" custom_margin="|||349px||"][/et_pb_divider][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner use_custom_gutter="on" _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px||" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet" custom_padding="13px||16px|0px|false|false"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_blog fullwidth="off" post_type="project" posts_number="5" excerpt_length="26" show_more="on" show_pagination="off" _builder_version="4.9.3" _module_preset="default" header_font="|600|||||||" read_more_font="|600|||||||" read_more_text_color="#e02b20" width="100%" custom_padding="|||0px|false|false" border_radii="on|5px|5px|5px|5px" border_width_all="2px" box_shadow_style="preset1"][/et_pb_blog][/et_pb_column_inner][/et_pb_row_inner][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_sidebar orientation="right" area="sidebar-1" _builder_version="4.9.3" _module_preset="default" custom_margin="|-3px||||"][/et_pb_sidebar][/et_pb_column][/et_pb_section]