[et_pb_section fb_built="1" specialty="on" _builder_version="4.9.3" _module_preset="default" custom_padding="0px|0px|0px|||"][et_pb_column type="3_4" specialty_columns="3" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_row_inner _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet" custom_padding="28px|||||"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" hover_enabled="0" sticky_enabled="0"]
-
Solar PV and battery optimisation
QUESTION
Download the household scale solar PV-battery spreadsheet model from Moodle.
Describe how the model works, and how it could be improved.
Optimise the PV array size for the 'stay at home' load and no battery.
Add a 14kWh Tesla Powerwall (enter "14" in the battery size cell).
Re-optimise the PV array, then find what the battery needs to cost for this to be a sensible investment.
Repeat this process for different demand profiles, battery sizes, feed in tariffs, costs of capital and any other input assumptions you'd like to test. What do you learn about the range of costs that batteries need to get to?
[/et_pb_text][et_pb_text _builder_version="4.9.3" _module_preset="default" width_tablet="" width_phone="100%" width_last_edited="on|phone" max_width="100%"]
| Subject |
Energy Sources |
Pages |
3 |
Style |
APA |
[/et_pb_text][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner module_class="the_answer" _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" width="100%" custom_margin="||||false|false" custom_margin_tablet="|0px|||false|false" custom_margin_phone="" custom_margin_last_edited="on|desktop"]
Answer
|
SIMPLE ECONOMIC MODEL - HOUSEHOLD SOLAR + BATTERY
|
|
|
|
|
|
|
|
|
Released by Chris Cooper 6/5/2015, under the Creative Commons Licence (CC BY-NC Attribution-Non Commercial). Major revision by Roger Dargaville, March 2019 The author offers no guarantees about the accuracy of this model, nor liability for its use.
|
|
|
|
PLEASE READ - MODEL ASSUMPTIONS + LIMITATIONS YOU SHOULD KNOW ABOUT 1. All costs are $AU unless stated 2. Key inputs are in Yellow 3. Information on some of the key inputs is still unclear. Any uncertainty is discussed in the cell comments. 4. In the interests of keeping this model simple and easy to use: a. Hourly demand intervals used b. The battery is automatically topped up by grid between 2pm and 3pm unless already topped up. If a relatively small solar PV system is installed, this can lead to a charge rate which exceeds the Powerwall's continuous power rating during this time. c. There is no assumed degradation of solar output or battery round-trip efficiency over time d. The model calculates the impact of solar and battery on an average day of generation and consumption. YEARLY EXPRAPOLATIONS (IN GREY) ARE BASED ON THE 'AVERAGE DAY' AND SHOULD THEREFORE BE USED ONLY AS AN 'UPPER BOUND' GUIDE OF THE POTENTIAL BENEFITS. Simulations have not been conducted for variations in daily sunshine and electricity consumption as doing so would add signification complexity to the calculator.
|
|
|
|
KEY MODEL ASSUMPTIONS
|
|
|
|
|
|
|
|
|
|
|
Household load profile type (select)
|
'Stay at home' steady daytime load
|
|
|
OUTPUT
|
|
|
|
Daily household energy use
|
15
|
kWh
|
|
|
|
|
Net annual benefit
|
0.00
|
|
|
Solar PV system size
|
0
|
kW
|
* inverter size is limited to 5kw so output greater than 5kW will be curtailed
|
|
|
Battery size (select)
|
0
|
kWh
|
|
|
|
|
|
|
|
|
Installed cost for battery system
|
0
|
$AUD
|
|
|
|
|
|
|
|
|
Location (select)
|
Melbourne
|
|
|
|
|
|
|
|
|
|
TECHNICAL + ECONOMIC INPUTS
|
|
|
|
|
|
|
|
|
|
|
ELECTRICITY PRICES
|
Flat
|
ToU
|
|
|
|
|
|
|
|
|
Tariff type
|
ToU
|
|
If ToU, model uses data in column S of the power flow data
|
|
|
Flat Electricity tariff
|
0.25
|
$/kWh
|
|
|
|
|
|
|
|
Solar export credit
|
0.1
|
$/kWh
|
Tariff is limited to systems with 5kW and below (bigger than 5kW, no fiT)
|
|
|
|
|
|
|
|
|
|
|
|
SOLAR
|
|
|
|
|
|
|
|
|
|
Capital costs
|
1.002
|
$/W
|
This is based on the city chosen and data
|
|
|
Total installed cost
|
0
|
$
|
|
|
|
|
|
|
|
Average Solar Generation/kWp
|
3.6
|
KWh/kWp (based on location)
|
|
|
1.571428571
|
|
|
|
|
|
|
|
|
|
|
BATTERY
|
|
|
|
|
|
|
|
|
|
$/kWh ($AU)
|
0
|
$/KWh
|
|
|
|
|
|
|
|
Total installed cost ($AU)
|
0
|
Includes mark-up and exchange rate
|
|
|
|
|
Extended warranty cost $/kWh
|
0
|
$/kWh of capacity
|
|
|
|
|
|
|
Total extended warranty cost
|
0
|
$
|
|
|
|
|
|
|
|
Annual maintenance cost
|
0
|
$/kWh/yr
|
|
|
|
|
|
|
Max Depth of Discharge
|
100%
|
% CHECK COMMENT BEFORE SELECTING
|
0.7
|
|
|
|
Usable capacity
|
0
|
kWh
|
|
|
|
1
|
|
|
|
Minimum state of charge
|
0
|
kWh
|
|
|
|
|
|
|
|
Round trip efficiency
|
92%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ECONOMIC INPUTS
|
|
|
|
|
|
|
|
|
|
Interest/discount rate
|
6%
|
|
|
|
|
|
|
|
|
Levelised term / technology life
|
15
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[/et_pb_text][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px|false|false" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|desktop" custom_padding="60px||6px|||"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_text _builder_version="4.9.3" _module_preset="default" min_height="34px" custom_margin="||4px|1px||"]
Related Samples
[/et_pb_text][et_pb_divider color="#E02B20" divider_weight="2px" _builder_version="4.9.3" _module_preset="default" width="10%" module_alignment="center" custom_margin="|||349px||"][/et_pb_divider][/et_pb_column_inner][/et_pb_row_inner][et_pb_row_inner use_custom_gutter="on" _builder_version="4.9.3" _module_preset="default" custom_margin="|||-44px||" custom_margin_tablet="|||0px|false|false" custom_margin_phone="" custom_margin_last_edited="on|tablet" custom_padding="13px||16px|0px|false|false"][et_pb_column_inner saved_specialty_column_type="3_4" _builder_version="4.9.3" _module_preset="default"][et_pb_blog fullwidth="off" post_type="project" posts_number="5" excerpt_length="26" show_more="on" show_pagination="off" _builder_version="4.9.3" _module_preset="default" header_font="|600|||||||" read_more_font="|600|||||||" read_more_text_color="#e02b20" width="100%" custom_padding="|||0px|false|false" border_radii="on|5px|5px|5px|5px" border_width_all="2px" box_shadow_style="preset1"][/et_pb_blog][/et_pb_column_inner][/et_pb_row_inner][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_sidebar orientation="right" area="sidebar-1" _builder_version="4.9.3" _module_preset="default" custom_margin="|-3px||||"][/et_pb_sidebar][/et_pb_column][/et_pb_section]